Unit 1: Evidence of a Common Ancestry

Grade: 8
Content Area: Life Science
Pacing: 20 Instructional Days

Essential Questions

1. **How do we know when an organism (fossil) was alive?**
2. **How do we know that birds and dinosaurs are related?**

Student Learning Objectives (Performance Expectations)

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Unit Summary

In this unit of study, students analyze graphical displays and gather evidence from multiple sources in order to develop an understanding of how fossil records and anatomical similarities of the relationships among organisms and species describe biological evolution. Students search for patterns in the evidence to support their understanding of the fossil record and how those patterns show relationships between modern organisms and their common ancestors. The crosscutting concepts of cause and effect, patterns, and structure and function are called out as organizing concepts for these disciplinary core ideas. Students use the practices of analyzing graphical displays and gathering, reading, and communicating information. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

- Biological Evolution
- Fossil records
- Existence
- Diversity
- Unity
- Anatomical Structures
- Chronological order
- Rock layers
- Anatomical, evolutionary, gross appearance
- Anatomy
- Embryological development
- Macroscopic
- Sediment
- Amber
- Radiometric dating
- Relative dating
- Chronometric
- Cladograms
- Homologous structure
- Morphology
- DNA
- Trait
- Cladistics
- Embryos
- Nonlinear relationships

Formative Assessment Measures

Part A: How do we know when an organism (fossil) was alive?

Students who understand the concepts are able to:

- Use graphs, charts, and images to identify patterns within the fossil record.
- Analyze and interpret data within the fossil record to determine similarities and differences in findings.
- Make logical and conceptual connections between evidence in the fossil record and explanations about the existence, diversity, extinction, and change in many life forms throughout the history of life on Earth.

Part B: How do we know that birds and dinosaurs are related?

Students who understand the concepts are able to:

- Apply scientific ideas to construct explanations for evolutionary relationships.
- Apply the patterns in gross anatomical structures among modern organisms and between modern organisms and fossil organisms to construct explanations of
evolutionary relationships.
Apply scientific ideas about evolutionary history to construct an explanation for evolutionary relationships evidenced by similarities or differences in the gross appearance of anatomical structures.

Part C: Other than bones and structures being similar, what other evidence is there that birds and dinosaurs are related?

Students who understand the concepts are able to:

Use diagrams or pictures to identify patterns in embryological development across multiple species.
Analyze displays of pictorial data to identify where the embryological development is related linearly and where that linear nature ends.
Infer general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.

<table>
<thead>
<tr>
<th>Interdisciplinary Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSLS-ELA</td>
</tr>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-1),(MS-LS4-2),(MS-LS4-3) RST.6-8.1 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3) RST.6-8.7 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-3) RST.6-8.9 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2) WHST.6-8.2 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2) WHST.6-8.9 Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-2) SL.8.1 Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2) SL.8.4</td>
</tr>
</tbody>
</table>

Core Instructional Materials Can include: Textbooks Series, Lab Materials, etc.
21st Century Life and Careers CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12

<table>
<thead>
<tr>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Learners</td>
</tr>
<tr>
<td>Scaffolding</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Word walls</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
</tr>
<tr>
<td>Bilingual dictionaries/translation</td>
</tr>
<tr>
<td>Think alouds</td>
</tr>
<tr>
<td>Read alouds</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
</tr>
<tr>
<td>Annotation guides</td>
</tr>
<tr>
<td>Think-pair-share</td>
</tr>
<tr>
<td>Visual aides</td>
</tr>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>Cognates</td>
</tr>
</tbody>
</table>

- Color contrast
- Extended time
- Graphic organizers
- Highlighter
- Notes/summaries
- Peer tutoring
- Parent communication
- Challenge assignments
- Critical/Analytical thinking tasks
MS-LS4-1 Biological Evolution: Unity and Diversity

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.

Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.

Evidence Statements: MS-LS4-1

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings.</td>
<td>The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.</td>
<td>Graphs, charts, and images can be used to identify patterns in data.</td>
</tr>
<tr>
<td>Connections to Nature of Science</td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
<td>Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.</td>
</tr>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science knowledge is based upon logical and conceptual connections between evidence and explanations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.ESS1.C ; MS.ESS2.B

Articulation of DCIs across grade-bands: 3.LS4.A ; HS.LS4.A ; HS.ESS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7

NJSLS- Math: 6.EE.B.6

5E Model

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

<table>
<thead>
<tr>
<th>Engage</th>
<th>What Are Fossils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipatory Set</td>
<td>http://www.ck12.org/biology/Fossils/lecture/user:13IntC/What-are-fossils/?referrer=concept_details&conceptLevel=&conceptSource=all</td>
</tr>
</tbody>
</table>
| Exploration
Student Inquiry | Show several different fossils or pictures of fossils (diverse types of fossils and fossils from different time periods) and ask students what characteristics the fossils have and how they compare to organisms that still exist today – identify names of present day organisms similar to the fossilized organisms
How is the present day organism SIMILAR to the extinct species? WHY are the two species similar?
How is the present day organism DIFFERENT than the extinct species? WHY are the two species different?
http://www.fossilmuseum.com/
http://www.bbc.co.uk/nature/fossils |
| Fossil Evidence for Evolution
http://www.pbslearningmedia.org/resource/tdc02.sci.life.evo.lp_fossilevid/the-fossil-evidence-for-evolution/ | In this lesson, students will learn how scientists find evidence of evolution and piece together the history of life. Students will learn about the fossil record, the primary form of evidence, as well as the fossil formation process and the evolution of animals. |
| Explanation
Concepts and Practices | In these lessons:
Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
LS4.A: Evidence of Common Ancestry and Diversity
The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. |
| Elaboration
Extension Activity | Related Activities
Better Lessons: MS-LS4-1 |
| Assessment Task A: Whale Evolution Timeline (Part 3 Step 10 of lesson plan from PBS learning website)
Ask each team of two to prepare an Eocene epoch timeline on paper, using the same scale as the classroom model (one inch equals one million years). Their timelines should be twenty-one inches long, with each million years labeled.
Whales in the Making
Using the images provided on the Whales in the Making worksheet, students will create timeline which represents the evolution of whales. |
| Assessment Task B: Discussion Questions
Analyze and interpret data to determine similarities and differences in findings.
After creating the timeline, students should use the following discussion questions to interpret and analyze the data collected.
What typical whale like traits were apparently the earliest to appear? What apparently evolved much later?
As each "missing link" was found, how many new gaps were formed? What is the relationship between gaps and fossils?
To find fossil evidence to fill the largest remaining gap in whale evolution, what age sediments would you search?
What distinguishing traits would you expect to find in whale fossils of that age?
Explain why the absence of transitional fossils does not mean that evolution didn't take place. |
LIFE SCIENCE

MS-LS4-2 Biological Evolution: Unity and Diversity

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.

Assessment Boundary: N/A

Evidence Statements: MS-LS4-2

Science & Engineering Practices

- Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.

Disciplinary Core Ideas

 - Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.

Cross-Cutting Concepts

- Patterns
 - Patterns can be used to identify cause and effect relationships.
- Connections to Nature of Science
 - Scientific Knowledge Assumes an Order and Consistency in Natural Systems
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

Connections to other DCIs in this grade-band: MS.LS3.A ; MS.LS3.B ; MS.ESS1.C

Articulation of DCIs across grade-bands: 3.LS4.A ; HS.LS4.A ; HS.ESS1.C

NJSLS- ELA: RRST.6-8.1, WHST.6-8.2, WHST.6-8, SL.8.1, SL.8.4

NJSLS- Math: 6.EE.B.6

5E Model

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Engage

Anticipatory Set

Students will compare images of an elephant shrew, an elephant, and a shrew to predict which two are most closely related based on observable anatomical characteristics.

Explore

Student Inquiry

Cladistics

Students will infer evolutionary relationships using a cladogram.
Explanation

Concepts and Practices

In these lessons:
- Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills, or abilities.
- Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
- **LS4.A: Evidence of Common Ancestry and Diversity**

Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.

Elaboration

Extension Activity

Additional Cladogram Activities:
- http://www.biologycorner.com/worksheets/cladogram.html#.VXBu00a8qSo

Evaluation

Assessment Tasks

Assessment Task A: Evaluate the accuracy of the completed Cladogram that student built in the Cladistics activity.

Assessment Task B: Closing Explanation

Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.

At the end of the lesson, pose the following question to students:

In your opinion, what is the most compelling evidence for evolution. Why? Encourage students to use the ACE strategy to answer.

See link below.

ACE Strategy
LIFE SCIENCE

MS-LS4-3 Biological Evolution: Unity and Diversity

MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.

Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.

Evidence Statements: MS-LS4-3

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.</td>
<td>Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.</td>
<td>Graphs, charts, and images can be used to identify patterns in data.</td>
</tr>
<tr>
<td>Analyze displays of data to identify linear and nonlinear relationships.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: N/A

Articulation of DCIs across grade-bands: HS.LS4.A

NJSLs- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLs- Math: N/A

5E Model

MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Engage

Anticipatory Set

- Guess the Embryo Interactive
 - http://www-tc.pbs.org/wgbh/nova/assets/swf/1/embryo/embryo.swf

Explore

- Embryo Comparison Activity
 - Given pictorial data, students will compare patterns of similarities in embryos to identify relationships across multiple species.
 - Which of the identified characteristics are still present in the fully formed anatomy of each species?

- Exploration Questions
 - What does the presence or absence of embryological characteristics in the fully formed anatomy suggest about relationships among these species?

- Embryonic Development- Evidence for Evolution
In this activity, students will analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

<table>
<thead>
<tr>
<th>Explanation Concepts and Practices</th>
<th>In these lessons: Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elaboration Extension Activity</th>
<th>Related Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://www.ck12.org/search/?q=MS-LS4-3&referrer=top_nav&autoComplete=false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Assessment Tasks</th>
<th>Assessment Task A: Embryonic Development Exit Slip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analyze displays of data to identify linear and nonlinear relationships.</td>
</tr>
<tr>
<td></td>
<td>Students complete an Exit Slip, where they are required to write a scientific explanation on how embryo development across species is evidence for evolution.</td>
</tr>
<tr>
<td>Unit 2: Overview</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Unit 2: Selection and Adaptation</td>
<td></td>
</tr>
</tbody>
</table>

Grade: 8
Content Area: Life Science
Pacing: 20 Instructional Days

Essential Question
Are Genetically Modified Organisms (GMO) safe to eat?

Student Learning Objectives (Performance Expectations)
- **MS-LS4-4.** Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
- **MS-LS4-5.** Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
- **MS-LS4-6.** Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Unit Summary
Students construct explanations based on evidence to support fundamental understandings of natural selection and evolution. They will use ideas of genetic variation in a population to make sense of how organisms survive and reproduce, thus passing on the traits of the species. The crosscutting concepts of patterns and structure and function are called out as organizing concepts that students use to describe biological evolution. Students use the practices of constructing explanations, obtaining, evaluating, and communicating information, and using mathematical and computational thinking. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms
- Natural selection, genetics, traits, probability, proportional reasoning, inheritance, artificial selection, genetic modifications, animal husbandry, gene therapy, mathematical models, adaptations, variables, Darwin Theory, genetic technology, selective breeding, extinct, transgenic, consumer, domestic, clone, synthesize, mutation, camouflage, industrial melanism, entomologist, simulation

Formative Assessment Measures

Part A: How can changes to the genetic code increase or decrease an individual’s chances of survival?

Students who understand the concepts are able to:
- Construct an explanation that includes probability statements regarding variables and proportional reasoning of how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.
- Use probability to describe some cause-and-effect relationships that can be used to explain why some individuals survive and reproduce in a specific environment.

Part B: How can the environment affect natural selection?

Students who understand the concepts are able to:
Explain some causes of natural selection and the effect it has on the increase or decrease of specific traits in populations over time.

Use mathematical representations to support conclusions about how natural selection may lead to increases and decreases of genetic traits in populations over time.

Part C: Are Genetically Modified Organisms (GMO) safe to eat?

Students who understand the concepts are able to:

- Gather, read, and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection) from multiple appropriate sources.
- Describe how information from publications about technologies and methods that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection) used are supported or not supported by evidence.
- Assess the credibility, accuracy, and possible bias of publications and the methods they used when gathering information about technologies that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection).

<table>
<thead>
<tr>
<th>Interdisciplinary Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSLS- ELA</td>
<td>NJSLS- Mathematics</td>
</tr>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-4),(MS-LS4-5) RST.6-8.1</td>
<td>Model with mathematics. (MS-LS4-6) MP.4</td>
</tr>
<tr>
<td>Compare and contrast the information gained from experiments, simulations, videos, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-4) RST.6-8.9</td>
<td>Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4),(MS-LS4-6) 6.RP.A.1</td>
</tr>
<tr>
<td>Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-4) WHST.6-8.2</td>
<td>Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6) 6.SP.B.5</td>
</tr>
<tr>
<td>Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-LS4-5) WHST.6-8.8</td>
<td>Recognize and represent proportional relationships between quantities. (MS-LS4-4),(MS-LS4-6) 7.RP.A.2</td>
</tr>
<tr>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-4) WHST.6-8.9</td>
<td></td>
</tr>
<tr>
<td>Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-4) SL.8.1</td>
<td></td>
</tr>
<tr>
<td>Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and</td>
<td></td>
</tr>
</tbody>
</table>
well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-4) SL.8.4

<table>
<thead>
<tr>
<th>Category</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Instructional Materials</td>
<td>Can include: Textbooks Series, Lab Materials, etc.</td>
</tr>
<tr>
<td>21st Century Life and Careers</td>
<td>CRP2, CRP4, CRP5, CRP6, CRP7, CRP8, CRP11, CRP12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Learners</td>
</tr>
<tr>
<td>Scaffolding</td>
</tr>
<tr>
<td>Word walls</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
</tr>
<tr>
<td>Bilingual dictionaries/translation</td>
</tr>
<tr>
<td>Think alouds</td>
</tr>
<tr>
<td>Read alouds</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
</tr>
<tr>
<td>Annotation guides</td>
</tr>
<tr>
<td>Think-pair-share</td>
</tr>
<tr>
<td>Visual aides</td>
</tr>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>Cognates</td>
</tr>
<tr>
<td>Special Education</td>
</tr>
<tr>
<td>Teacher tutoring</td>
</tr>
<tr>
<td>Study guides</td>
</tr>
<tr>
<td>Graphic organizers</td>
</tr>
<tr>
<td>Extended time</td>
</tr>
<tr>
<td>Parent communication</td>
</tr>
<tr>
<td>Modified assignments</td>
</tr>
<tr>
<td>Counseling</td>
</tr>
<tr>
<td>At-Risk</td>
</tr>
<tr>
<td>Curriculum compacting</td>
</tr>
<tr>
<td>Gifted and Talented</td>
</tr>
<tr>
<td>Challenge assignments</td>
</tr>
<tr>
<td>Tiered activities</td>
</tr>
<tr>
<td>Collaborative teamwork</td>
</tr>
<tr>
<td>Critical/Analytical thinking tasks</td>
</tr>
</tbody>
</table>
MS-LS4-4 Biological Evolution: Unity and Diversity

MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.

Assessment Boundary: N/A

Evidence Statements: MS-LS4-4

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>LS4.B: Natural Selection</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.</td>
<td>Natural selection leads to the predominance of certain traits in a population, and the suppression of others.</td>
<td>Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS3.A; MS.LS3.B

NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.2, WHST.6-8.9, SL.8.1, SL.8.4

NJSLS- Math: 6.RP.A.1, 6.SP.B.5, 7.RP.A.2

5E Model

MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Engage

Anticipatory Set

Peppered Moth Simulation
http://peppermoths.weebly.com/

Peppered Moth Activity
http://betterlesson.com/lesson/637464(peppered-moths)

Exploration

Student Inquiry

What is Evolution

In this activity, students will construct an explanation based on evidence that describes how genetic variation of traits in a population increase some individual's probability of surviving and reproducing in a specific environment.
http://betterlesson.com/lesson/636016(what-is-evolution)

Explanation

In these lessons:
| Concepts and Practices | Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
LS4.B: Natural Selection
Natural selection leads to the predominance of certain traits in a population, and the suppression of others. |
| Evaluation Assessment Tasks | Assessment Task A:
Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.
To end the lesson, go through Recipe For Evolution: Variation, Selection & Time which is a resource from Learn. Genetics Genetic Science Learning Center which is a wonderful resource on a large variety of biology topics. This reinforces some of the things the students should have learned by doing the simulations.
To assess student learning, have students write a response to the following prompt in their journal: explain how genetic variation of traits in a population increase some individual's probability of surviving and reproducing in a specific environment. Use evidence from your investigations to support your answer. As this is a formative assessment, use a 3 point scale to assess this journal entry:
3 - Demonstrates strong understanding of the concept.
2 - Demonstrates good understanding of the concept with only minor misunderstandings
1 - Demonstrates poor understanding of the concept with major misunderstandings
Meet with students who scored a 1 to ensure that their misunderstandings are cleared up before moving on to the next lesson. |
LIFE SCIENCE

MS-LS4-5 Biological Evolution: Unity and Diversity

MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.

Assessment Boundary: N/A

Evidence Statements: MS-LS4-5

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>LS4.B: Natural Selection</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.</td>
<td>In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed onto offspring.</td>
<td>Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.</td>
</tr>
<tr>
<td>Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.</td>
<td></td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>Interdependence of Science, Engineering, and Technology</td>
<td>Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.</td>
<td></td>
</tr>
<tr>
<td>Connections to Nature of Science</td>
<td>Science Addresses Questions About the Natural and Material World</td>
<td>Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: N/A

Articulation of DCIs across grade-bands: HS.LS3.B ; HS.LS4.C

NJSLS- ELA: RST.6-8.1, WHST.6-8.8

NJSLS- Math: N/A

5E Model
Engage
Anticipatory Set
- Video: Classical vs. Transgenic Breeding

For what kind of characteristics have food crops been selectively bred?
What are some examples of harmful effects of selective breeding?

Exploration
Student Inquiry
- Artificially Selecting Dogs
 - Students learn how artificial selection can be used to develop new dog breeds with characteristics that make the dogs capable of performing a desirable task. Students begin by examining canine features and their functions. They are then given a scenario that describes the type of task they need a new breed of dog to perform. They then select two existing breeds they feel will most likely produce a successful new breed and determine the resulting offspring's characteristics. This lesson emphasizes variation, inheritance, selection, and time (number of generations) to help students develop a clear understanding of artificial selection and, ultimately, natural selection.
 http://www.ucmp.berkeley.edu/education/lessons/breeding_dogs/
- Genetic Technology
 - Students will conduct research to determine the similarities, differences, applications, and potential impacts of genetic technologies.

Explanation
Concepts and Practices
- In these lessons:
 - Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills, or abilities.
 - Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
- Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
 - LS4.B: Natural Selection
 - In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed onto offspring.

Elaboration
Extension Activity
- Genetic Engineering Debate
 - Objective: To research the genetic engineering of food and create a public service announcement from the perspective of either the farmer or consumer.
 - Questions for students to address:
 - What type of technology is used in your type of genetic engineering?
 - What are the benefits and risks of this type of technology?
 - Who should be in charge of regulating and monitoring this type of genetic engineering to make sure that no one is abusing this technology?
 - Research positions must be based on facts
<table>
<thead>
<tr>
<th>Evaluation Assessment Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Task A: Artificially Selecting Dogs- Written Response</td>
</tr>
<tr>
<td>Following this activity, students will write a paragraph describing the process of artificial selection in their own words, using dogs or another organism as their example. Encourage students to use and underline the VIST terms (variation, inheritance, selection, time) in their explanation.</td>
</tr>
<tr>
<td>Assessment Task B:</td>
</tr>
<tr>
<td>Clone Video Reflection</td>
</tr>
<tr>
<td>Following the activity part of the Genetic Technology lesson, students should synthesize information learned by completing the reflection activity.</td>
</tr>
<tr>
<td>Assessment Task C:</td>
</tr>
<tr>
<td>Students will create an illustration that sums up their feelings/viewpoint on the genetic technologies they just learned about. Students can hand draw this or create it on the computer but either way it must be neat, colorful and their position (for or against) must be obvious. Students can then compare their wordle created in the warm-up to their illustration to see if their perspective has changed.</td>
</tr>
<tr>
<td>Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.</td>
</tr>
</tbody>
</table>
LIFE SCIENCE

MS-LS4-6 Biological Evolution: Unity and Diversity

MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.

Assessment Boundary: Assessment does not include Hardy Weinberg calculations.

Evidence Statements: MS-LS4-6

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Mathematics and Computational Thinking</td>
<td>LS4.C: Adaptation</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. Use mathematical representations to support scientific conclusions and design solutions.</td>
<td>Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.</td>
<td>Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C; MS.LS3.B; MS.ESS1.C

NJSLS- ELA: N/A

NJSLS- Math: MP.4, 6.RP.A.1, 6.SP.B.5, 7.RP.A.2

5E Model

MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Engage

Anticipatory Set

- Natural Selection Video

Exploration

Student Inquiry

- Nature at Work Mice Lab
 - https://d2ct263enury6r.cloudfront.net/dQOQiAOu34mWuVJ625rTV9mYLbqflasfeqyDrQZten4WDa0h.pdf

If the events in the game occurred in nature, how would the group of mice change over time? How did the results for the white sand environment differ from those of the brown forest floor environment? Students should use their numerical data to explain how natural selection leads to increases or decreases of specific traits in populations over time.

Explanation

In these lessons:
<table>
<thead>
<tr>
<th>Concepts and Practices</th>
<th>Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls4.C: Adaptation</td>
<td>Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.</td>
</tr>
<tr>
<td>Elaboration</td>
<td>Related Lessons</td>
</tr>
<tr>
<td>Extension Activity</td>
<td>http://betterlesson.com/next_gen_science/browse/2239/ngss-ms-ls4-6-use-mathematical-representations-to-support-explanations-of-how-natural-selection-may-lead-to-increases-and-decreases</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Assessment Task A: Lab Analysis Questions</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>Assessment Task B: Lab Graph</td>
</tr>
<tr>
<td></td>
<td>Use mathematical representations to support scientific conclusions and design solutions.</td>
</tr>
<tr>
<td></td>
<td>Student graphs should:</td>
</tr>
<tr>
<td></td>
<td>- compare the population changes of mice in both environments across all three generations</td>
</tr>
<tr>
<td></td>
<td>- include a title, labels and a key if necessary</td>
</tr>
</tbody>
</table>
Unit 3: Overview

Unit 3: Stability and Change on Earth

Grade: 8
Content Area: Earth and Space Science
Pacing: 30 Instructional Days

Essential Question

Why aren't minerals and groundwater distributed evenly across the world?

Student Learning Objectives (Performance Expectations)

- **MS-ESS3-1.** Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.
- **MS-ESS3-2.** Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
- **MS-ESS3-4.** Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.
- **MS-ESS3-5.** Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Unit Summary

Students construct an understanding of the ways that human activities affect Earth’s systems. Students use practices to understand the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts on the development of these resources. Students also understand that the distribution of these resources is uneven due to past and current geosciences processes or removal by humans. The crosscutting concepts of patterns, cause and effect, and stability and change are called out as organizing concepts for these disciplinary core ideas. In this unit of study students are expected to demonstrate proficiency in asking questions, analyzing and interpreting data, constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

- non-renewable
- petroleum
- organic marine sediment
- geological traps
- metal ores
- hydrothermal
- subduction zones
- geoscience process
- natural hazards
- catastrophic events
- mass wasting
- per-capita consumption
- solar radiation
- methane
- carbon dioxide

Formative Assessment Measures

Part A: Why aren't minerals and groundwater distributed evenly across the world?

Students who understand the concepts are able to:

- Construct a scientific explanation based on valid and reliable evidence of how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geosciences processes.
- Obtain evidence from sources, which must include the student’s own experiments.
- Construct a scientific explanation based on the assumption that theories and laws that describe the current geosciences process operates today as they did in the past and will continue to do so in the future.

Part B: How can we predict and prepare for natural disasters?
Students who understand the concepts are able to:
Analyze and interpret data on natural hazards to determine similarities and differences and to distinguish between correlation and causation.

Part C: How might we treat resources if we thought about the Earth as a spaceship on an extended survey of the solar system?

Students who understand the concepts are able to:
Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

<table>
<thead>
<tr>
<th>Interdisciplinary Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSLS- ELA</td>
</tr>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1),(MS-ESS3-2) RST.6-8.1</td>
</tr>
<tr>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS3-2) RST.6-8.7</td>
</tr>
<tr>
<td>Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1) WHST.6-8.2</td>
</tr>
<tr>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1)WHST.6-8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Instructional Materials</th>
<th>Can include: Textbooks Series, Lab Materials, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21st Century Life and Careers</td>
<td>CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12</td>
</tr>
<tr>
<td>Technology Standards</td>
<td>8.1.8.A.5, 8.1.8.D.4, 8.1.8.E.1,8.1.8.F.1, 8.2.8.B.2.,8.2.8.B.3,8.2.8.B.4, 8.2.8.B.5, 8.2.8.B.7 8.2.8.D.1, 8.2.8.D.1, 8.2.8.D.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Learners</td>
</tr>
<tr>
<td>Scaffolding</td>
</tr>
<tr>
<td>Word walls</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
</tr>
<tr>
<td>Bilingual dictionaries/translation</td>
</tr>
<tr>
<td>Think alouds</td>
</tr>
<tr>
<td>Read alouds</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
</tr>
<tr>
<td>Annotation guides</td>
</tr>
<tr>
<td>Think-pair- share</td>
</tr>
<tr>
<td>Visual aids</td>
</tr>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>Cognates</td>
</tr>
</tbody>
</table>
MS-ESS3-1 Earth and Human Activity

MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-1

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
</table>
| **Constructing Explanations and Designing Solutions** | **ESS3.A: Natural Resources**
Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes. | **Cause and Effect**
Cause and effect relationships may be used to predict phenomena in natural or designed systems.
Connections to Engineering, Technology, and Applications of Science
Influence of Science, Engineering, and Technology on Society and the Natural World
All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. |

Connections to other DCIs in this grade-band: MS.PS1.A ; MS.PS1.B ; MS.ESS2.D

NJSLS - ELA: SL.8.5 RST.6-8.1, WHST.6-8.2, WHST.6-8.9

NJSLS - Math: 6.EE.B.6, 7.EE.B.4

5E Model

Engage
Video: Groundwater, Beneath the Surface
Anticipatory Set

Pre-Discussion Questions
- What is water called beneath the surface?
- What are some dangers facing aquifers and groundwater?

Post-Discussion Questions:
- Why is groundwater so vital to us?
- How does the water cycle operate?

Extension Activity
- Name as many parts of the water cycle as you can and describe the function of each.
- Possible activity: Draw a water cycle with as many parts as you can to show how they all interact, and then replay the animation to check and fill in the rest. Compare groundwater to aquifers. How are they alike and how are they different? How are aquifers replenished or depleted?

Exploration

Student Inquiry

Students will work in pairs at computer stations on the “Energy in the U.S. Webquest”. Students will learn about renewable and nonrenewable energy sources and current and future consumption trends in the U.S. Students will need to utilize headphones during the video/audio sections of the Webquest in order to successfully complete it. When students complete the Webquest, the teacher will initiate a class discussion using the following discussion questions:

1. What agencies or organizations sponsored the Web sites you collected information from and what might their bias be?
2. Do you think the information presented on the Web sites is balanced?
3. What makes some energy sources renewable and others nonrenewable?
4. What are the advantages of using renewable energy sources?
5. Do you think the U.S. has an obligation to reduce its use of nonrenewable energy sources? Why?
6. What future energy trends do you think are likely for the U.S.?

After completing this Webquest, ask students to create a poster using the information they collected about energy in the U.S. The overarching topic of the poster can be open to students. For example, it could focus on renewable energy, impacts of energy on the environment, trends in U.S. energy consumption, or a comparison of U.S. energy consumption to other countries. Students should use graphics or pictures. Encourage students to draw or use magazine clippings or photos and to be as creative as possible. Students should also cite evidence and resources from the Web-quest in the poster text. Posters can be displayed around the classroom, lunchroom, or in school hallways.

Explanation

Concepts and Practices

In these lessons
- Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
- Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

ESS3.A: Natural Resources
- Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes.
<table>
<thead>
<tr>
<th>Elaboration Extension Activity</th>
<th>Assessment Task A: Student Poster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Activities:</td>
<td>Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.</td>
</tr>
<tr>
<td>Better Lessons (MS-ESS3-1)</td>
<td>Following the WebQuest, students will use the information they gathered to create a poster. Student posters should include a scientific explanation which focuses on how the availability of nonrenewable energy resources has and continues to change.</td>
</tr>
<tr>
<td>Measuring Energy in the Atmosphere: Exploring Climate Change</td>
<td>See Rubric on pg. 4</td>
</tr>
<tr>
<td>Blame it on the Carbon</td>
<td></td>
</tr>
<tr>
<td>Energy History</td>
<td></td>
</tr>
<tr>
<td>Why is Coal So Important?</td>
<td></td>
</tr>
<tr>
<td>Exploring Oil</td>
<td></td>
</tr>
<tr>
<td>What are We Coming Home To?</td>
<td></td>
</tr>
</tbody>
</table>
EARTH AND SPACE SCIENCE

MS-ESS3-2 Earth and Human Activity

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and without notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-2

Science & Engineering Practices

<table>
<thead>
<tr>
<th>Analyzing and Interpreting Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS3.B: Natural Hazards</td>
</tr>
<tr>
<td>Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterns</td>
</tr>
<tr>
<td>Graphs, charts, and images can be used to identify patterns in data.</td>
</tr>
<tr>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.PS3.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7

NJSLS- Math: MP.2, 6.EE.B.6, 7.EE.B.4

5E Model

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.
| **Engage** Anticipatory Set | Have students view series of National Geographic Videos on Catastrophic Events (volcanoes, hurricanes, tsunamis, tornadoes, and earthquakes.
http://video.nationalgeographic.com/video/environment
Lead classroom discussion on catastrophic events. Encourage students to share their previous understanding of and personal experiences with these events. |
|---------------------------|---|
| **Explanation** Concepts and Practices | Naturally Disastrous
In this lesson, students are introduced to natural disasters and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards—avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano—as well as specific examples of natural disasters. Students also explore why understanding these natural hazards is important to survival on our planet.
Save Our City
In this lesson, students learn about various natural hazards and specific methods engineers use to prevent these hazards from becoming natural disasters. They study a hypothetical map of an area covered with natural hazards and decide where to place natural disaster prevention devices by applying their critical thinking skills and an understanding of the causes of natural disasters.
| **Elaboration** Extension Activity | In these lessons
Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
ESS3.B: Natural Hazards
Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.
Earthquake Hazards
http://betterlesson.com/lesson/629624/earthquake-hazards
In this activity, students will identify major seismic hazards and evaluate the effectiveness of various safety measures. |
| **Evaluation** Assessment Tasks | Predicting Volcanic Eruptions: Exercise
Analyze and interpret data to determine similarities and differences in findings.
Students will apply their understanding of interpreting natural hazard data to forecast future catastrophic events. |
EARTH AND SPACE SCIENCE

MS-ESS3-4 Earth and Human Activity

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-4

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.</td>
<td>Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.</td>
<td>Cause and effect relationships may be used to predict phenomena in natural or designed systems.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.LS2.A ; MS.LS4.D

NJSLS - ELA: RST.6-8.1, WHST.6-8.1, WHST.6-8.9

NJSLS- Math: 6.RP.A.1, 7.RP.A.2, 6.EE.B.6, 7.EE.B.4

5E Model

Engage Anticipatory Set

Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources:

- 7 Billion: How Did We Get So Big So Fast?
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Inquiry</td>
<td>Why Do We Build Dams? In this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thirsty County. https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_dams/cub_dams_lesson01.xml</td>
</tr>
<tr>
<td>How Much Water Do You Use? In this activity, students will keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. Students will then relate their own water usages to the average residents of imaginary Thirsty County, and calculate the necessary water capacity of a dam that would provide residential water to the community. https://www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_dams/cub_dams_lesson01_activity1.xml Following these activities, students will be asked to synthesize their understanding of this concept by constructing an argument that explains the connection between human population and the availability of natural resources. Students should refer to concrete examples from these activities in order to support their argument with evidence.</td>
<td></td>
</tr>
<tr>
<td>Explanation</td>
<td>In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS3.C: Human Impacts on Earth Systems Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.</td>
</tr>
<tr>
<td>Elaboration</td>
<td>Assessment Task A: Why Do We Build Dams? Proposal Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. After you have introduced the hypothetical Thirsty County scenario, divide the class into engineering teams of 2-3 students each, and ask each team to write a short proposal response to the municipality of Thirsty County to address the resident's' needs. Proposals should comment on the needs of the residents, some possible solutions (at least a Plan A and Plan B), and benefits/problems associated with each plan proposed. For example, students may write a statement that says their team will "address the resident's' needs by designing a dam that provides people with water during summer droughts, protects buildings from flash floods and storms, and produces hydropower as a clean energy alternative to coal-fired power plants."</td>
</tr>
<tr>
<td>Extension Activity</td>
<td>Evaluation Assessment Tasks</td>
</tr>
</tbody>
</table>
MS-ESS3-5 Earth and Human Activity

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-5

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ESS3.D: Global Climate Change</td>
<td>Stability and Change</td>
</tr>
<tr>
<td>Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. Ask questions to identify and clarify evidence of an argument.</td>
<td>Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities.</td>
<td>Stability might be disturbed either by sudden events or gradual changes that accumulate over time.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.PS3.A

NJSLS- ELA: RST.6-8.1

NJSLS- Math: MP.2, 6.EE.B.6, 7.EE.B.4

5E Model

Engage

Anticipatory Set

- Show the trailer for the movie “Chasing Ice”. Have students work in small groups or pairs to try and identify themes or ideas conveyed by the trailer. https://chasingice.com/

- Have students read the online National Geographic article “The Big Thaw”. The article explores the issues around global warming and melting glaciers. View and discuss each photo from the photo gallery. http://ngm.nationalgeographic.com/2007/06/big-thaw/big-thaw-text

- Show students a graph of the increase in average temperature on Earth over the last few years. Have students examine the graph and make hypotheses about why the temperature has increased.
Exploration

Student Inquiry

Activity 1: Exploring Global Climate Change

Next, student will explore NASA’s climate change website: On this site, students can view facts, explore interactive features, view videos, read articles related to climate change, providing them with a basis of understanding on this topic. http://climate.nasa.gov/.

After exploring the site, direct students to NASA’s whiteboard animation series. Guide students in viewing and discussion several of these video animations. Following each video, lead students in a discussion to assess their thoughts and reactions. http://climate.nasa.gov/climate_resource_center/earthminute

Climate Hot Map

http://www.climatehotmap.org/index.html

Activity 2: Viewpoints on Global Warming

To expose students to opposing viewpoints on global warming, have students read the article: Is Global Warming Real? This article presents the five top arguments both for and against global warming. http://www.conserve-energy-future.com/is-global-warming-real.php

After reading this article, have students complete the Venn-Diagram to answer the question: Has human activity caused the world’s climate to change over the past 100 years? Have students discuss their completed diagrams. What were some of the similarities and differences among the completed Venn-Diagrams? http://www-tc.pbs.org/now/classroom/globalvenn.pdf

Activity 3: Making Predictions About the Effects of Global Warming

With a basic understanding of the global climate change, students can now make predictions about the potential impact of global warming. Ask students to hypothesize about how the world’s climate could change over the next 100 years if humans do not take action. Have students make predictions about the effects such climate changes could have on humans.

Have students explore NASA proposed solutions to climate change, specifically proposed energy innovations. In groups, have students visit the following website and select one of the innovations. Students should read the article on their chosen innovation and gather key facts. Have students share these facts through brief group presentations. http://climate.nasa.gov/solutions/energy_innovations/

Explanation

Concepts and Practices

In these lessons

Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.

Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

ESS3.D: Global Climate Change

Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other
[kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities.]

| Elaboration Extension Activity | Global Warming Project (PBS)
http://www-tc.pbs.org/now/classroom/globalproject.pdf |

| Evaluation Assessment Tasks | **Assessment Task A: Question Debate**
Ask questions to identify and clarify evidence of an argument.
Following Activity 2- Viewpoints on Global Warming, students will be asked to pick a position on the topic of global warming. Using the evidence they gathered for both positions on their Venn-Diagram, the students will then be asked to construct a series of questions that could be used in a class debate on the topic. The questions that the students formulate should be directed to those who identify with the opposing view. Students will be assessed on the quality of the questions they develop and their overall participation in the debate. |
Unit 4: Overview

Unit 4: Human Impacts

Grade: 8

Content Area: Earth and Space Science

Pacing: 25 Instructional Day

Essential Questions
How do we monitor the health of the environment (our life support system)?
Is it possible to predict and protect ourselves from natural hazards?

Student Learning Objectives (Performance Expectations)

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Unit Summary
In this unit of study, students analyze and interpret data and design solutions to build on their understanding of the ways that human activities affect Earth’s systems. The emphasis of this unit is the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts of these uses. The crosscutting concepts of cause and effect and the influence of science, engineering, and technology on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Building on Unit 3, students define a problem by precisely specifying criteria and constraints for solutions as well as potential impacts on society and the natural environment; systematically evaluate alternative solutions; analyze data from tests of different solutions; combining the best ideas into an improved solution; and develop and iteratively test and improve their model to reach an optimal solution. In this unit of study students are expected to demonstrate proficiency in analyzing and interpreting data and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms
Aquifers, levee, urban development, pollution, anthropogenic, particulates, ecological community

Formative Assessment Measures

Part A: How do we monitor the health of the environment (our life support system)?
Students who understand the concepts are able to:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Interdisciplinary Connections

NJSLS- ELA
Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) RST.6-8.1

NJSLS- Mathematics
Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an
Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS3-3),(MS-ETS1-3) RST.6-8.7

Compare and contrast the information gained from experiments, simulations, videos, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) RST.6-8.8

Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2) WHST.6-8.7

Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS3-3),(MS-ETS1-1) WHST.6-8.8

Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2) WHST.6-8.9

Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ETS1-4) SL.8.5

Core Instructional Materials
Can include: Textbooks Series, Lab Materials, etc.

21st Century Life and Careers
CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12

Technology Standards

Modifications

<table>
<thead>
<tr>
<th>Scaffolding</th>
<th>Special Education</th>
<th>At-Risk</th>
<th>Gifted and Talented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word walls</td>
<td>Teacher tutoring</td>
<td>Peer tutoring</td>
<td>Challenge assignments</td>
</tr>
<tr>
<td>Visual aids</td>
<td>Peer tutoring</td>
<td>Study guides</td>
<td>Enrichment activities</td>
</tr>
<tr>
<td>Graphic organizers</td>
<td>Graphic organizers</td>
<td>Extended time</td>
<td>Tiered activities</td>
</tr>
<tr>
<td>Multimedia</td>
<td>Leveled readers</td>
<td>Extended time</td>
<td>Independent research/inquiry</td>
</tr>
<tr>
<td>Leveled readers</td>
<td>Assistive technology</td>
<td>Parent communication</td>
<td>Collaborative teamwork</td>
</tr>
<tr>
<td>Notes/summaries</td>
<td>Modified assignments</td>
<td>Modified assignments</td>
<td>Higher level questioning</td>
</tr>
<tr>
<td>Extended time</td>
<td>Counseling</td>
<td></td>
<td>Critical/Analytical thinking tasks</td>
</tr>
<tr>
<td>Annotation guides</td>
<td>Answer masking</td>
<td>Answer eliminator</td>
<td>Self-directed activities</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Think-pair- share</td>
<td>Highlighter</td>
<td>Color contrast</td>
<td></td>
</tr>
<tr>
<td>Visual aides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EARTH AND SPACE SCIENCE

MS-ESS3-3 Earth and Human Activity

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-3

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific principles to design an object, tool, process or system.</td>
<td>Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.</td>
<td>Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.LS2.A ; MS.LS2.C , MS.LS4.D

NJSLS- ELA: WHST.6-8.7, WHST.6-8.8

NJSLS- Math: 6.RP.A.1, 7.RP.A.2, 6.EE.B.6, 7.EE.B.4

5E Model

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Engage

Anticipatory Set

Have students view the following video and online quiz

Human Impact on the Environment:

<table>
<thead>
<tr>
<th>Exploration</th>
<th>Will the Air Be Clean Enough to Breath?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Inquiry</td>
<td>This online interactive is comprised of five modules. In completing these activities, students will explore real-time air quality data with maps from the United States EPA. They will run experiments with computational models to investigate how pollutants flow in the atmosphere and look at how factors such as wind, sun, rain, geography and pollution affect air quality. By the end of the module, students will be able to predict the effect of human development on a region's future air quality. http://concord.org/stem-resources/will-air-be-clean-enough-breathe</td>
</tr>
</tbody>
</table>

| Design Your Society | In this activity, students will use all they have learned about the potential impacts of climate change to create a 3D model of a self-sustaining, resilient society. http://betterlesson.com/lesson/644797/design-your-society |

Explanation	In these lessons
Concepts and Practices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
ESS3.C: Human Impacts on Earth Systems	Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

| Elaboration | Mix and Math Ecology: Human Impact |

In what ways could the human action be changed to achieve the same result but with better environmental consequences? Could any buffers or protection be placed on the ecological communities that might better preserve the natural resource? What policies or laws could be passed that might help? |

| Evaluation | Assessment Task A: Design Your Society using Google Sketch Up |
| Assessment Tasks | Apply scientific principles to design an object, tool, process or system. Using what students have learned about the potential impacts of climate change, students will create a 3D model of a self-sustaining, resilient society (using Google Sketch Up). |

Assessment Task B: Society Presentations |
Students will present 3D models to the class. Students viewing the presentations will use the Society Presentation Notes Guide to synthesize and interpret information learned from presentations. |
MS-ETS1-1 Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Evidence Statements: MS-ETS1-1

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.</td>
<td>The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.</td>
<td>All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.</td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3

Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B

NJSLS- ELA: RST.6-8.1, WHST.6-8.8

NJSLS- Math: MP.2, 7.EE.3
ENGINEERING DESIGN

MS-ETS1-2 Engineering Design

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Evidence Statements: MS-ETS1-2

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.</td>
<td>There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.</td>
<td></td>
</tr>
<tr>
<td>Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7, WHST.6-8.9

NJSLS- Math: MP.2, 7.EE.3
MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ETS1.B: Developing Possible Solutions
There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.</td>
<td>ETS1.C: Optimizing the Design Solution
Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.</td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLS- Math: MP.2, 7.EE.3
Unit 5: Overview

Unit 5: Relationships Among Forms of Energy

Grade: 8
Content Area: Physical Science
Pacing: 20 Instructional Days

Essential Question

How can physics explain sports?

Student Learning Objectives (Performance Expectations)

- **MS-PS3-1.** Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.
- **MS-PS3-2.** Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
- **MS-PS3-5.** Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Unit Summary

In this unit, students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence to make sense of the relationship between energy and forces. Students develop their understanding of important qualitative ideas about the conservation of energy. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students also understand the difference between energy and temperature, and the relationship between forces and energy. The crosscutting concepts of scale, proportion, and quantity, systems and system models, and energy and matter are called out as organizing concepts for these disciplinary core ideas. Students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

- Kinetic energy
- Potential energy
- Electric interactions
- Magnetic interaction
- Gravitational interactions
- Empirical evidence

Formative Assessment Measures

Part A: Is it better to have an aluminum (baseball/softball) bat or a wooden bat?

Students who understand the concepts are able to:

Construct and interpret graphical displays of data to identify linear and nonlinear relationships of kinetic energy to the mass of an object and to the speed of an object.

Part B: What would give you a better chance of winning a bowling match, using a basketball that you can roll really fast, or a bowling ball that you can only roll slowly?

Students who understand the concepts are able to:

Develop a model to describe what happens to the amount of potential energy stored in the system when the arrangement of objects interacting at a distance changes.
Use models to represent systems and their interactions, such as inputs, processes, and outputs, and energy and matter flows within systems. Models could include representations, diagrams, pictures, and written descriptions.

Part C: Who can design the best roller coaster?

Students who understand the concepts are able to:

Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Conduct an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of an object. Do not include calculations of energy.

Interdisciplinary Connections

<table>
<thead>
<tr>
<th>NJSLS- ELA</th>
<th>NJSLS- Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS3-1),(MS-PS3-5) RST.6-8.1</td>
<td>Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-5) MP.2</td>
</tr>
<tr>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1) RST.6-8.7</td>
<td>Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1),(MS-PS3-5) 6.RP.A.1</td>
</tr>
<tr>
<td>Write arguments focused on discipline content. (MS-PS3-5) WHST.6-8.1</td>
<td>Understand the concept of a unit rate (\frac{a}{b}) associated with a ratio (a:b) with (b \neq 0), and use rate language in the context of a ratio relationship. (MS-PS3-1) 6.RP.A.2</td>
</tr>
<tr>
<td>Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3) WHST.6-8.7</td>
<td>Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5) 7.RP.A.2</td>
</tr>
<tr>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2) SL.8.5</td>
<td>Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1) 8.EE.A.1</td>
</tr>
</tbody>
</table>

Core Instructional Materials
Can include: Textbooks Series, Lab Materials, etc.

Technology Standards

Modifications

<table>
<thead>
<tr>
<th>English Language Learners</th>
<th>Special Education</th>
<th>At-Risk</th>
<th>Gifted and Talented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaffolding</td>
<td>Special education</td>
<td>At-Risk</td>
<td>Gifted and Talented</td>
</tr>
<tr>
<td>Word walls</td>
<td>Visual aides</td>
<td>Teacher tutoring</td>
<td>Curriculum compacting</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
<td>Graphic organizers</td>
<td>Peer tutoring</td>
<td>Challenge assignments</td>
</tr>
<tr>
<td>Bilingual dictionaries/translation</td>
<td>Multimedia</td>
<td>Study guides</td>
<td>Enrichment activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphic organizers</td>
<td>Tiered activities</td>
</tr>
<tr>
<td>Think alouds</td>
<td>Leveled readers</td>
<td>Extended time</td>
<td>Independent research/inquiry</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Read alouds</td>
<td>Assistive technology</td>
<td>Parent communication</td>
<td>Collaborative teamwork</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
<td>Notes/summaries</td>
<td>Modified assignments</td>
<td>Higher level questioning</td>
</tr>
<tr>
<td>Annotation guides</td>
<td>Extended time</td>
<td>Counseling</td>
<td>Critical/Analytical thinking tasks</td>
</tr>
<tr>
<td>Think-pair- share</td>
<td>Answer masking</td>
<td></td>
<td>Self-directed activities</td>
</tr>
<tr>
<td>Visual aides</td>
<td>Answer eliminator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td>Highlighter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognates</td>
<td>Color contrast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS. Energy

MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.

Assessment Boundary: N/A

Evidence Statements: MS-PS3-1

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>PS3.A: Definitions of Energy</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Construct and interpret graphical displays of data to identify linear and nonlinear relationships.</td>
<td>Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed.</td>
<td>Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.PS2.A

NJSLS- ELA: RST.6-8.1, RST.6-8.7

NJSLS- Math: MP.2, 6.RP.A.2, 7.RP.A.2, 8.EE.A.1, 8.EE.A.2, 8.F.A.3

5E MODEL

MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Engage

Anticipatory Set

Using the following resource, students will view videos, read articles and engage in interactive simulations related to kinetic energy.

http://www.ck12.org/ngss/middle-school-physical-sciences/energy

Exploration

Student Inquiry

In these lab activities, students will determine the relationship among the energy transferred, the type of matter, the mass and the change in the average kinetic energy of the particles. Students will construct and interpret graphical displays on their data and present arguments to support a claim.

Explanation

In these lessons:
| Concepts and Practices | Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. **Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):**
PS3.A: Definitions of Energy
Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. |
| Elaboration Extension Activity | **Rubber Band Cannon Lab**
Students use rubber band cannons to explore potential and kinetic energy transfer!
http://betterlesson.com/lesson/633996/rubber-band-cannon-lab |
| Evaluation Assessment Tasks | **Assessment Task A**
Construct and interpret graphical displays of data to identify linear and nonlinear relationships.
Students will construct and interpret graphical displays on their data and construct, use, and present arguments to support a claim. Complete Energy Skate Park Exploration Potential and Kinetic Energy activity guide. |
MS. Energy

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.

Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.

Evidence Statements: MS-PS3-2

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS3.A: Definitions of Energy
A system of objects may also contain stored (potential) energy, depending on their relative positions.</td>
<td>Systems and System Models
Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems.</td>
</tr>
<tr>
<td>Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.</td>
<td>PS3.C: Relationship Between Energy and Forces
When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: N/A

NJSLS- ELA: SL.8.5

NJSLS- Math: N/A

5E MODEL

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Engage

Anticipatory Set

Exploration

Student Inquiry

Building Roller Coasters

Students will work in pairs/groups to create a physical roller coaster. Refer to the following website for detailed instructions and student worksheets.
Explanation

Concepts and Practices

In these lessons:

- Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
- Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):

- **PS3.A: Definitions of Energy**
 - A system of objects may also contain stored (potential) energy, depending on their relative positions.
- **PS3.C: Relationship Between Energy and Forces**
 - When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Elaboration

Extension Activity

- Hold discussion on why some roller coasters failed, show videos of X-games events involving energy transformations and motion.
- Students will be encouraged to participate in discussion about what they viewed and why certain X-games athletes were successful in certain tricks while others failed.

Evaluation

Assessment Tasks

- **Assessment Task A**
 - Develop a model to describe unobservable mechanisms.
 - Students will complete Roller Coaster worksheet.
MS. Energy

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.

Assessment Boundary: Assessment does not include calculations of energy.

Evidence Statements: MS-PS3-5

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.</td>
<td>When the motion energy of an object changes, there is inevitably some other change in energy at the same time.</td>
<td>Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).</td>
</tr>
<tr>
<td>Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence

Science knowledge is based upon logical and conceptual connections between evidence and explanations

Articulation of DCIs across grade-bands: MS.PS2.A

Connections to other DCIs in this grade-band: MS.PS2.A

NJSLS- ELA: RST.6-8.1, WHST.6-8.1

NJSLS- Math: MP.2, 6.RP.A.1, 7.RP.A.2, 8.F.A.3

5E MODEL

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engage

Anticipatory Set

Using the following resources have students view videos, read articles and engage in discussion on how kinetic energy changes, energy is transferred to or from objects. Go to the MS-PS3-5 section of the page.

http://www.ck12.org/ngss/middle-school-physical-sciences/energy
<table>
<thead>
<tr>
<th>Exploration</th>
<th>Student Inquiry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Show students videos comparing crash tests on vehicles traveling at different speeds into different barriers and ask students to collaborate and show how energy transfers are occurring in the video.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Concepts and Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In these lessons:</td>
</tr>
<tr>
<td></td>
<td>Teachers Should:</td>
</tr>
<tr>
<td></td>
<td>Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.</td>
</tr>
<tr>
<td></td>
<td>Students Should:</td>
</tr>
<tr>
<td></td>
<td>Verbalize conceptual understandings and demonstrate scientific and engineering practices.</td>
</tr>
</tbody>
</table>

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):

PS3.B: Conservation of Energy and Energy Transfer

When the motion energy of an object changes, there is inevitably some other change in energy at the same time.

<table>
<thead>
<tr>
<th>Elaboration</th>
<th>Extension Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Egg Projectile Project</td>
</tr>
<tr>
<td></td>
<td>http://www.ehow.com/how_8405300_do-egg-projectile-project.html</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Assessment Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Task A</td>
</tr>
<tr>
<td></td>
<td>Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon.</td>
</tr>
<tr>
<td></td>
<td>Students will complete Step 7 in the Energy Transfer Lab Activity. Using the Quick Guide to Creating a Well Developed Paragraph in Science, students will construct an argument supported by evidence.</td>
</tr>
</tbody>
</table>
Unit 6: Overview

Unit 6: Thermal Energy

Grade: 8
Content Area: Physical Science
Pacing: 30 Instructional Days

Essential Question

How can a standard thermometer be used to tell you how particles are behaving?

Student Learning Objectives (Performance Expectations)

- **MS-PS3-3.** Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
- **MS-ETS1-2.** Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
- **MS-ETS1-3.** Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
- **MS-ETS1-4.** Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
- **MS-PS3-4.** Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
- **MS-ETS1-1.** Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Unit Summary

In this unit, students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data, construct explanations, define problems and design solutions as they make sense of the difference between energy and temperature. They use the practices to make sense of how the total change of energy in any system is always equal to the total energy transferred into or out of the system. The crosscutting concepts of energy and matter, scale, proportion, and quantity, and influence of science, engineering, and technology on society and the natural world are the organizing concepts for these disciplinary core ideas. Students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data, construct explanations, define problems and design solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Thermal energy transfer, thermal dynamics, fahrenheit, kinetic energy, mass, potential energy, gravity, conduction, convection, radiation, calorimetry

Formative Assessment Measures

Part A: How can a standard thermometer be used to tell you how particles are behaving?

Students who understand the concepts are able to:
Individually and collaboratively plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
As part of a planned investigation, identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Make logical and conceptual connections between evidence and explanations.

Part B: You are an engineer working for NASA. In preparation for a manned space mission to the Moon, you are tasked with designing, constructing, and testing a device that will keep a hot beverage hot for the longest period of time. It costs approximately $10,000 per pound to take payload into orbit so the device must be lightweight and compact. The lack of atmosphere on the Moon produces temperature extremes that range from -157 degrees C in the dark to +121 degrees C in the light. Your devise must operate on either side of the Moon (https://spaceflightsystems.grc.nasa.gov/education/rocket/moon.html).

Students who understand the concepts are able to:

- Apply scientific ideas or principles to design, construct, and test a design of a device that either minimizes or maximizes thermal energy transfer.
- Determine design criteria and constraints for a device that either minimizes or maximizes thermal energy transfer.
- Test design solutions and modify them on the basis of the test results in order to improve them.
- Use a systematic process for evaluating solutions with respect to how well they meet criteria and constraints.

Interdisciplinary Connections

<table>
<thead>
<tr>
<th>NJSLS- ELA</th>
<th>NJSLS- Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-PS3-5),(MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) RST.6.8.1</td>
<td>Reason abstractly and quantitatively. (MS-PS3-4),(MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) MP.2</td>
</tr>
<tr>
<td>Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4) RST.6.8.3</td>
<td>Summarize numerical data sets in relation to their context. (MS-PS3-4) 6.SP.B.5</td>
</tr>
<tr>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-3),(MS-PS3-4),(MS-ETS1-3) RST.6.8.7</td>
<td>Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) 7.EE.3</td>
</tr>
<tr>
<td>Compare and contrast the information gained from experiments, simulations, videos, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2),(MS-ETS1-3) RST.6.8.9</td>
<td>Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4) 7.SP</td>
</tr>
<tr>
<td>Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2) WHST.6.8.7</td>
<td></td>
</tr>
<tr>
<td>Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ETS1-1) WHST.6.8.8</td>
<td></td>
</tr>
<tr>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2) WHST.6.8.9</td>
<td></td>
</tr>
</tbody>
</table>
Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ETS1-4) SL.8.5

<table>
<thead>
<tr>
<th>Core Instructional Materials</th>
<th>Can include: Textbooks Series, Lab Materials, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21st Century Life and Careers</td>
<td>CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Learners</td>
</tr>
<tr>
<td>Scaffold</td>
</tr>
<tr>
<td>Word walls</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
</tr>
<tr>
<td>Bilingual</td>
</tr>
<tr>
<td>dictionaries/translation</td>
</tr>
<tr>
<td>Think alouds</td>
</tr>
<tr>
<td>Read alouds</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
</tr>
<tr>
<td>Annotation guides</td>
</tr>
<tr>
<td>Visual aids</td>
</tr>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>Cognates</td>
</tr>
</tbody>
</table>
MS. Energy

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Evidence Statements: MS-PS3-3

### Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions | **PS3.A: Definitions of Energy** | Energy and Matter
Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

PS3.B: Conservation of Energy and Energy Transfer
Energy is spontaneously transferred out of hotter regions or objects and into colder ones.

ETS1.A: Defining and Delimiting an Engineering Problem
The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary)

ETS1.B: Developing Possible Solutions
A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary)

Connections to other DCIs in this grade-band: MS.PS1.B ; MS.ESS2.A ; MS.ESS2.C ; MS.ESS2.D

NJSLS- ELA: RST.6-8.3, WHST.6-8.7

NJSLS- Math: N/A

5E MODEL

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Engage

Anticipatory Set
Using the following resources have students view videos, read articles and engage in discussion about thermal energy transfer. Go to MS-PS3-3 section of the page.
<table>
<thead>
<tr>
<th>Exploration</th>
<th>Build a Solar Oven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Inquiry</td>
<td>In this activity, students will design, test and construct a solar oven, providing a concrete example of thermal energy transfer.</td>
</tr>
<tr>
<td></td>
<td>http://www.hometrainingtools.com/a/build-a-solar-oven-project</td>
</tr>
<tr>
<td></td>
<td>Thermal Protection Systems: Day 1</td>
</tr>
<tr>
<td></td>
<td>In this activity, students will apply scientific principles to design, construct and test a device that either minimizes or maximises thermal energy transfer.</td>
</tr>
<tr>
<td></td>
<td>http://betterlesson.com/lesson/634000/thermal-protection-systems-day-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation</th>
<th>In these lessons:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts and Practices</td>
<td>Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.</td>
</tr>
<tr>
<td></td>
<td>Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.</td>
</tr>
<tr>
<td></td>
<td>Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):</td>
</tr>
<tr>
<td></td>
<td>PS3.A: Definitions of Energy</td>
</tr>
<tr>
<td></td>
<td>Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.</td>
</tr>
<tr>
<td></td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
</tr>
<tr>
<td></td>
<td>Energy is spontaneously transferred out of hotter regions or objects and into colder ones.</td>
</tr>
<tr>
<td></td>
<td>ETS1.A: Defining and Delimiting an Engineering Problem</td>
</tr>
<tr>
<td></td>
<td>The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary)</td>
</tr>
<tr>
<td></td>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td></td>
<td>A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elaboration</th>
<th>Build a Thermos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Activity</td>
<td>In this activity, students will design, construct and test a thermos structure to determine which model keeps the warmest temperature.</td>
</tr>
<tr>
<td></td>
<td>http://betterlesson.com/lesson/628050/build-a-thermos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Assessment Task A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Tasks</td>
<td>Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.</td>
</tr>
<tr>
<td></td>
<td>Students will be assessed based upon the execution of design and effectiveness of solar oven. If solar oven is not effective, students should demonstrate the ability to brainstorm solutions to modify and/or change design to make it work.</td>
</tr>
<tr>
<td></td>
<td>Assessment Task B</td>
</tr>
<tr>
<td></td>
<td>Thermal Protection System Design Challenge Student Lab Sheet</td>
</tr>
<tr>
<td>Science & Engineering Practices</td>
<td>Disciplinary Core Ideas</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world. Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.</td>
<td>There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.</td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7, WHST.6-8.9

NJSLS- Math: MP.2, 7.EE.3
MS-ETS1-3 Engineering Design

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Evidence Statements: MS-ETS1-3

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td></td>
</tr>
<tr>
<td>Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.</td>
<td>There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.</td>
<td></td>
</tr>
<tr>
<td>Analyze and interpret data to determine similarities and differences in findings.</td>
<td>Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.B: Developing Possible Solutions

Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution

Problems include: Physical Science: MS-PS1-6

Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C

NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9

NJSLS- Math: MP.2, 7.EE.3
MS-ETS1-4 Engineering Design

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Evidence Statements: MS-ETS1-4

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td></td>
</tr>
<tr>
<td>Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.</td>
<td>A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.</td>
<td></td>
</tr>
<tr>
<td>Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.</td>
<td>Models of all kinds are important for testing solutions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETS1.C: Optimizing the Design Solution The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5

Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6

NJSLS- ELA: SL.8.5

NJSLS- Math: MP.2, 7.SP
MS. Energy

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Evidence Statements: MS-PS3-4

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>PS3.A: Definitions of Energy</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.</td>
<td>Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.</td>
<td>Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.</td>
</tr>
<tr>
<td>Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td></td>
</tr>
<tr>
<td>Connections to Nature of Science</td>
<td>The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.PS1.A ; MS.PS2.A ; MS.ESS2.C ; MS.ESS2.D ; MS.ESS3.D

NJSLS- ELA: RST.6-8.3, WHST.6-8.7

NJSLS- Math: MP.2, 6.SP.B.5

<table>
<thead>
<tr>
<th>5E MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.</td>
</tr>
</tbody>
</table>

Engage

Using the following resources have students view videos, read articles and engage in discussion on how energy, mass and matter impact temperatures. Go to MS-PS3-4 section of the page.
Exploration

Student Inquiry

Heat Transfer Lab Rotation: Conduction, Convection and Radiation

In this lab activity, students will identify and explain the various ways that heat transfers through systems in the natural world.

Materials Affect the Rate of Heat Transfer - Experimental Design

In this activity, students will compare different materials to determine which ones are better at preventing heat transfer. Using a given set of materials, students will work to design a penguin home which can maintain a cool temperature.

Explanation

Concepts and Practices

In these lessons:

Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.

Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):

- **PS3.A: Definitions of Energy**

 Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

- **PS3.B: Conservation of Energy and Energy Transfer**

 The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environ

Elaboration

Extension Activity

Related Activities

http://participatoryscience.org/standard/ms-ps3-4

Evaluation

Assessment Tasks

Assessment Task A: Materials Affect the Rate of Heat Transfer- Penguin Home Design

Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Students will be evaluated on the planning and implementation of their penguin home design. The success of each student design will ultimately be tested by its ability to maintain a cool temperature.*
MS-ETS1-1 Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Evidence Statements: MS-ETS1-1

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.</td>
<td>The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.</td>
<td>All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.</td>
</tr>
<tr>
<td>Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to MS-ETS1.A: Defining and Delimiting Engineering Problems include: Physical Science: MS-PS3-3

Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B

NJSLS- ELA: RST.6-8.1, WHST.6-8.8

NJSLS- Math: MP.2, 7.EE.3
Unit 7: Overview

Unit 7: The Electromagnetic Spectrum

Grade: 8
Content Area: Physical Science
Pacing: 20 Instructional Days

Essential Question

How do cell phones work?

Student Learning Objectives (Performance Expectations)

- **MS-PS4-1.** Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.
- **MS-PS4-2.** Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
- **MS-PS4-3.** Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Unit Summary

In this unit of study, students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information in order to describe and predict characteristic properties and behaviors of waves. Students also apply their understanding of waves as a means of sending digital information. The crosscutting concepts of patterns and structure and function are used as organizing concepts for these disciplinary core ideas. Students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Amplitude, wavelength, electromagnetic waves, repeating waves, reflected waves, absorbed waves, transmitted waves, refracted waves, analog signals, fiber optic cable, light pulses, radio wave pulses, binary patterns

Formative Assessment Measures

Part A: Why do surfers love physicists?

Students who understand the concepts are able to:

- Use mathematical representations to describe and/or support scientific conclusions about how the amplitude of a wave is related to the energy in a wave.
- Use mathematical representations to describe a simple model.

Part B: How do the light and sound system in the auditorium work?

Students who understand the concepts are able to:

- Develop and use models to describe the movement of waves in various materials.

Part C: If rotary phones worked for my grandparents, why did they invent cell phones?

Students who understand the concepts are able to:

- Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims that digitized signals are a more reliable way to encode and transmit information than analog signals are.
<table>
<thead>
<tr>
<th>Interdisciplinary Connections</th>
<th>NJSLS- Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJSLS- ELA</td>
<td>Reason abstractly and quantitatively. (MS-PS4-1) MP.2</td>
</tr>
<tr>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-PS4-3) RST.6-8.1</td>
<td>Model with mathematics. (MS-PS4-1) MP.4</td>
</tr>
<tr>
<td>Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-PS4-3) RST.6-8.2</td>
<td>Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS4-1) 6.RP.A.1</td>
</tr>
<tr>
<td>Compare and contrast the information gained from experiments, simulations, videos, or multimedia sources with that gained from reading a text on the same topic. (MS-PS4-3) RST.6-8.9</td>
<td>Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS4-1) 6.RP.A.3</td>
</tr>
<tr>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-PS4-3) WHST.6-8.9</td>
<td>Recognize and represent proportional relationships between quantities. (MS-PS4-1) 7.RP.A.2</td>
</tr>
<tr>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS4-1),(MS-PS4-2) SL.8.5</td>
<td>Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS4-1) 8.F.A.3</td>
</tr>
</tbody>
</table>

Core Instructional Materials
Can include: Textbooks Series, Lab Materials, etc.

21st Century Life and Careers
CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12

Technology Standards

Modifications

<table>
<thead>
<tr>
<th>English Language Learners</th>
<th>Special Education</th>
<th>At-Risk</th>
<th>Gifted and Talented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaffolding</td>
<td>Word walls</td>
<td>Teacher tutoring</td>
<td>Curriculum compacting</td>
</tr>
<tr>
<td>Word walls</td>
<td>Visual aids</td>
<td>Peer tutoring</td>
<td>Challenge assignments</td>
</tr>
<tr>
<td>Sentence/paragraph frames</td>
<td>Graphic organizers</td>
<td>Study guides</td>
<td>Enrichment activities</td>
</tr>
<tr>
<td>Bilingual dictionaries/translation</td>
<td>Multimedia</td>
<td>Graphic organizers</td>
<td>Tiered activities</td>
</tr>
<tr>
<td>Think alouds</td>
<td>Leveled readers</td>
<td>Extended time</td>
<td>Independent research/inquiry</td>
</tr>
<tr>
<td>Read alouds</td>
<td>Assistive technology</td>
<td>Parent communication</td>
<td>Collaborative teamwork</td>
</tr>
<tr>
<td>Highlight key vocabulary</td>
<td>Notes/summaries</td>
<td>Modified assignments</td>
<td>Higher level questioning</td>
</tr>
<tr>
<td>Annotation guides</td>
<td>Extended time</td>
<td>Counseling</td>
<td>Critical/Analytical thinking tasks</td>
</tr>
<tr>
<td>Think-pair- share</td>
<td>Answer masking</td>
<td></td>
<td>Self-directed activities</td>
</tr>
<tr>
<td>Visual aides</td>
<td>Answer eliminator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td>Highlighter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognates</td>
<td>Color contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Science & Engineering Practices

- **Using Mathematics and Computational Thinking**
 - Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.
 - Use mathematical representations to describe and/or support scientific conclusions and design solutions.

- **Connections to Nature of Science**
 - **Scientific Knowledge is Based on Empirical Evidence**
 - Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Disciplinary Core Ideas

- **PS4.A: Wave Properties**
 - A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.

Cross-Cutting Concepts

- **Patterns**
 - Graphs and charts can be used to identify patterns in data.

Connections to other DCIs in this grade-band: N/A

NJSLS- ELA: SL.8.5

NJSLS- Math: MP.2, MP.4, 6.RP.A.1, 6.RP.A.3, 7.RP.A.2, 8.F.A.3

5E MODEL

Engage

- **Anticipatory Set**
 - **Types of Waves**
 - https://www.youtube.com/watch?v=w2s2fZr8sqQ
 - **Demonstration**
 - Use an example of “wall ball” and the bouncing of a ball. Predict where the ball will bounce given the angle of incidence. Relate this to the Law of Reflection and the angle of incidence and reflection. Discuss the difference between regular and diffused reflection.

Explore

- **Student Inquiry**
 - **Wave Behavior Labs**
 - In these lab activities, students will create simple mathematical representations of waves and identify characteristic properties of waves.
Day 2: http://betterlesson.com/lesson/633450/wave-behavior-lab-rotation-day-2 |
| Elaboration/Extension Activity | **In these lessons:**
Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
PS4.A: Wave Properties
A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (MS-PS4-1)

Extension Activity
Have students review the graphs they created during the lab. Ask them to predict the change in the energy of the wave if any one of the parameters of the wave is changed.

| Evaluation/Assessment Tasks | **Assessment Task A: Graphing of Characteristics Properties of Waves**
Use mathematical representations to describe and/or support scientific conclusions and design solutions.
Assessment Task B: Lab Closure Questions
What evidence can you cite that different types of waves interact with matter in different ways?
How can you create a mathematical representation of wave properties? |
PHYSICAL SCIENCE
MS. Waves and Their Applications in Technologies for Information Transfer

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.

Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.

Evidence Statements: MS-PS4-2

<table>
<thead>
<tr>
<th>Science & Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Cross-Cutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS4.A: Wave Properties</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena.</td>
<td>A sound wave needs a medium through which it is transmitted.</td>
<td>Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.</td>
</tr>
<tr>
<td></td>
<td>PS4.B: Electromagnetic Radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>However, because light can travel through space, it cannot be a matter wave, like sound or water waves.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: MS.LS1.D

NJSLS- ELA: SL.8.5

NJSLS- Math: N/A

5E MODEL

Engage

Anticipatory Set

Provide an example of how light or sound can be reflected, absorbed or transmitted through a medium (between objects). Find one object within the classroom that will represent light being reflected, absorbed or transmitted and bring it back to your seat (examples of: translucent, opaque and transparent).

The class will create a list on the Smartboard and discuss whether their “object” reflects, absorbs or transmits light and how/why they choose that “object.”

- **Introduction to Light Video:** https://www.youtube.com/watch?v=yHJ_X_IxtB8
- **Indoor Rainbow:** http://www.weatherwizkids.com/experiments-rainbow-indoor.htm
- **http://www.bozeman.science.com/waves**
Exploration

Student Inquiry

What is a medium? What types of materials can light and sound pass through? How will sound/light passing through solids, liquids or gasses affect the energy (waves) that are transmitted? What real-life situations/experiences can you use as examples to support your thinking?

Light Activity: Exploring Light: Absorb, Reflect, Transmit or Refract?

Sound Activity: http://www.ehow.com/info_8119201_sound-wave-experiments-kids.html

Water Activities: https://www.ck12.org/physical-science/Mechanical-Wave-in-Physical-Science/

Explanation

Concepts and Practices

In these lessons:

Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.

Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):

- **PS4.A: Wave Properties**
 - A sound wave needs a medium through which it is transmitted. (MS-PS4-2)

- **PS4.B: Electromagnetic Radiation**
 - When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light. (MS-PS4-2)
 - The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. (MS-PS4-2)
 - A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. (MS-PS4-2)
 - However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2)

Elaboration

Extension Activity

- **Sunscreens and Sunburns**

Evaluation

Assessment Tasks

Assessment Task A

- Develop and use a model to describe phenomena.

After completing Exploring Light Properties Investigation, students will complete the What Did You Learn Today? worksheet to describe that waves are reflected, absorbed, or transmitted through various materials.
MS. Waves and Their Applications in Technologies for Information Transfer

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.

Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.

Evidence Statements: MS-PS4-3

Science & Engineering Practices

- **Obtaining, Evaluating, and Communicating Information**
 - Obtaining, evaluating, and communicating information in 6-8 builds on K-5 and progresses to evaluating the merit and validity of ideas and methods.
 - Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.

Disciplinary Core Ideas

- **PS4.C: Information Technologies and Instrumentation**
 - Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.

Cross-Cutting Concepts

- **Structure and Function**
 - Structures can be designed to serve particular functions.
- **Connections to Engineering, Technology, and Applications of Science**
 - Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations.
 - Connections to Nature of Science
 - Science is a Human Endeavor
 - Advances in technology influence the progress of science and science has influenced advances in technology.

Connections to other DCIs in this grade-band: N/A

NJSLS- ELA: RST.6-8.1, RST.6-8.2, RST.6-8.9, WHST.6-8.9

NJSLS- Math: N/A

5E MODEL

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Engage

- **Anticipatory Set**
 - Analog vs. Digital Video: http://www.diffen.com/difference/Analog_vs_Digital
- **Guiding Question**
 - Besides digital (computers, phones, etc.) what are other ways that you have heard/seen/read of transmitting information (mail, music, video, etc.) without the use of computers?

Explore

- **Student Inquiry**
 - Day 1:
Have students read the following article about analog vs. digital media and information
http://www.diffen.com/difference/Analog_vs_Digital
What are examples of analog vs. digital media?
How has the real world transitioned from analog to digital in the last 10 years?
Please provide examples from your life where you were able to see and record these changes.

Day 2:
Examples of Media to Explore: Music, Images, Phone/Communication, Maps/Satellites, Video Games (8 bit cartridges vs. now can download to console - no disc required!), shopping (go to mall vs. online shopping).
Below is a list of items that students can be asked to research how it has changed/grown to be more digital as time has gone by. It is important for students to realize the resources and learning potential they NOW have available to them (that once did not exist due to technological constraints).
Clocks, Medical Devices, Telephones, Cassettes/Radio vs. Pandora/Sirius, Paper Maps vs. Google Maps/Earth, Cars

Day 3:
Digital vs. Analog Signal Project: Students will be able to explain why digital wave signals are a more reliable way of communicating information than analog wave signals.
https://sciencewithmrsbowling.wordpress.com/resources/digital-vs-analog-signal-project/

Explanation

Concepts and Practices

In these lessons:
Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.

Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
PS4.C: Information Technologies and Instrumentation
Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. (MS-PS4-3)

Elaboration

Extension Activity
http://faraday.theiet.org/resources/overview/analogue-digital.cfm
Bluetooth and WiFi: How do they work? What is actually being transmitted? How have these technologies help to make every day “activities” easier? (Communication, Satellites, NASA Probe Missions - Pluto, Fiber Optic Cables vs. Dial-Up). What’s a cloud?

Evaluation

Assessment Tasks
Assessment Task A
Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.
After completed Day 3 (Digital vs. Analog Signal Project), students will explain in written text why digital signals are better than analog signals.